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Abstract. It has been shown that Synge's metric representing null electromagnetic field 
admits proper Ricci collineation. The space-time admits curvature collineation in special 
cases and the cc vectors are obtainable from the RC vector by an appropriate choice of the 
arbitrary quantities involved. When the RC vector is constrained to give motion the space-- 
time permits 5-, 6- and 7-parameter groups of motions in the different cases considered. 
I t  is found that the space-time admits Maxwell and Ricci collineations along common 
directions in special cases for which both the conservation laws are satisfied. 

1. The metric and electromagnetic field 

Synge's (1960) metric plays an important part in demonstrating plane gravitational 
waves in the case of empty space. In this paper we show that the metric represents null 
electromagnetic field under certain restrictions when Rij # 0. Electromagnetic field 
equations depend upon the Ricci and electromagnetic field tensors. Hence it is interest- 
ing to consider in this case whether the space-time admits Ricci and Maxwell collinea- 
tions and also to see whether vector fields exist along which both the collineations are 
permissible together. It is found that the space-time admits both Ricci and Maxwell 
collineations and the collineation vectors have been determined separately. It is shown 
that in special cases the two exist along the same vector field and the conservation laws 
couched in terms of collineation vectors are satisfied. 

The metric under consideration is (Synge 1960) 

ds2 = e2'(dx')' + e2Q(dx2)2 + 2 dx3 dx4. (1.1) 

It is easy to see that both [P,44+(P,4)2] = p and [Q,44 +(Q.4)2] q cannot be zero or the 
space-time degenerates into flat space. (In this paper a comma and a semicolon followed 
by any suffix or suffixes denote partial and covariant differentiation with respect to the 
corresponding coordinates.) 

For equation (l . l) ,  Rij # 0, R = 0 are satisfied and the Ricci tensor can be written as 

(1.2) R. .  = a/.[. 
I J  I J  

where U = [ p  + q]  and li = (0, 0, 0, 1) is the null vector. 

the null cone. One such relationship is 
For a gravitational radiation field the Riemann tensor bears a special relationship to 

(Rhijk + i*Rhijk)lk = 0 (1.3) 
where lk is a null vector and *Rhijk is the dual tensor of Rhilk. Equation (1.3) imposes a very 
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severe condition on the Riemann tensor which is satisfied only asymptotically in the 
wave zone of a radiating system and exactly in a space-time representing plane gravita- 
tional waves and a few other special cases. It can be seen that equation (1.3) is satisfied 
for equation (1.1). Hence the space-time under consideration represents a gravitational 
radiation field possibly associated with an electromagnetic field. 

To study the electromagnetic field represented by the space-time (1. l), we consider 
source-free Einstein-Maxwell equations, namely 

where k = 8n, 4nEiJ = - FikFjk++gijFa,Fab where FiJ is the electromagnetic field tensor. 
Obviously the field equation (1.4) reduces to 

RiJ = 2FikFIk (1.5) 

as FijFij = 0 in view of equation (1.2). 

following : 
Using equation (1.5) and the components of the Ricci tensor Rij  for (1.1) we get the 

F12 F23 = F34 = F31 = 0 (1.6) 

[g' '(F,,)2+gZZ(F24)21 = i ( P + d  (1.7) 

From equations (1.6) and (1.7) we find that the Maxwell equations 

F'I;, = 0 FiJ;k + Fjk;; + Fki;j = 0 (1.8) 
are satisfied. 

Hence from the Einstein-Maxwell equation (1.5) we conclude that in the space-time 
given by equation (1. l), the only non-vanishing components of the electromagnetic field 
tensor are in general F14 and F24 satisfying the Maxwell equations and also 

FijFiI = 0 F ~ ~ * F ~ J  = 0 

showing that the space-time represents a null electromagnetic radiation field. 

2. Ricci collineation and curvature collineation 

A space-time is said to permit Ricci collineation (Katzin et a1 1969) along a field vector 5' 
if 

2';RiJ = 0 

where Yt stands for the Lie derivative along the field vector t'. 
Here we examine whether the space-time under consideration permits Ricci collinea- 

tion (RC). Using the components of Rij  for equation (1.1) in equation (2.1) we get the 
following independent equations : 
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The integration of equation (2.2) gives the components of the Ricci collineation vector as 

4;' = <'(XI,  x2, x3, x4) 

( 2  = (2(x', xz, x3, x") 

t 3  = (3(x', xz, x3, x4) 

5" = K/(p+q)"' (2.3) 

where K is an arbitrary constant of integration. 
To determine whether the RC is proper we proceed to examine curvature collineation 

(cc) and other higher symmetries for the space-time. cc always implies RC for a space- 
time and for the RC to be proper the space-time does not in general permit cc. 

A space-time is said to admit curvature collineation (Katzin et a1 1969) along a field 
vector 5' if 

YtR!'ijk = 0. (2.4) 

Clearly this gives 96 equations. 

which are listed below : 
From equation (2.4) it can be seen that three possible cases arise when p # 0, 4 # 0 

Case ( a )  p = q and 4;*$ ezp = - S:, ezQ 

Case (b) 

Case ( c )  

p = 4 and 4;,12 = 0 = t:l 
p # 4 and <,12 = 0 = (f,. 

In order to determine the components of the CC vector in case (a) we find on solving 
equation (2.4) for the space-time that 

+ a 1(P,4 - Q ,") e('+ Q)x 'x2 + [ 2$ + - :1 (4P$i p*4)] x3 + $ 3  

and 

(2.10) 

(2.1 1) 

where K: = K: and K ,  , K,,  a, are arbitrary constants and (I/, $,, $,, are arbitrary 
functions of x4 alone. Hence the cc vector in this case is given by the equations (2.8)- 

Considering the case (b)  it is obvious that the components of the cc vector in this 
case are also given by equations (2.8)-(2.11) with the condition that a, = 0 and K :  = K: .  

For the case (c) it may be noted that the components of the cc vector are once again 
given by the set of equations (2.8)-(2.11) when a ,  = 0 and K f 4  = K:p. 

Similarly the other two cases when p # 0,4 = 0 and p = 0, q # 0 can be worked out. 

(2.11). 
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Hence we conclude that the space-time (1.1) admits curvature collineation in all 
possible cases as is expected and the cc vector in different cases can be deduced from the 
RC vector by choosing appropriate tl, t2, t3  and K in equation (2.3). Similarly it can be 
seen that RC vector (2.3) does not give motion in general and other higher symmetries 
such as conformal motion, homothetic motion, conformal collineation, affine collinea- 
tion, projective collineation etc because of the general character of its first three com- 
ponents. Hence the RC vector (2.3) is proper. 

3. Ricci collineation and motion 

The vector field 5' given by equation (2.3) defines Ricci collineation for the space-time 
(1.1) when Ri j  # 0. A study of this vector when constrained to give motion is of interest. 

A space-time V, is said to admit motion if there exists a vector 5' satisfying 

9<gi ,  = 0. (3.1) 

The vector 5' is known as the Killing vector if equation (3.1) is satisfied. 
Solving the equations (3. I )  we get on integration 

5 1 = - K ' 4  ( o:,2)x1+al e-(P-Q)xZ+a, s e T z p  dx4+a3 (3.2) 

t3  = [ K e2'[$) ,,IF + [ K e2.[$$) ,,I? + [a 1(P,4 - Q,,) e(p+ Q)]x1x2 - azx 

with the conditions 

al[(P,s-Q,4)e(PcQ)],4 = 0 

and 
- -  @I = o .  

,4 

Also equation (2.3) gives 

5" = K/G'!~, 

(3.4) 

(3.5) 

The space-time V, therefore admits motion if the conditions (3.5) are satisfied in 
which case the RC vector reduces to the Killing vector whose components are given by 
equations (3.2)-(3.4) and (3.6). Considering different cases we find : 
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Case (i). P and Q arbitrary and hence K = 0, a ,  = 0. In this case the space-time 

Case (ii). K = 0, a ,  # 0 and hence p = 4. The space-time admits a 6-parameter 

Case (iii). K # 0, a ,  # 0 and hence p = 4 = 8ax4+b) - '  where a, b are arbitrary 

Singh and Sharma (1975) have already shown that in the empty case 5- and 6- 

admits a 5-parameter group of motions. 

group of motions. 

constants. Here the space-time admits a 7-parameter group of motions. 

parameter groups of motions are admissible. 

4. Maxwell collineation 

Electromagnetic fields are said to admit Maxwell collineation (Collinson 1970) along 
the vector field 5' if 

9'<F', = 0 (4.1) 
in which case the vector field 5' is called the MC vector. 

We have seen in $ 1 that the non-empty space-time (1.1) admits null electromagnetic 
field satisfying the Maxwell equations, and also RC along the vector field 5' given by 
equation (2.3). It is of interest to examine whether the space-time admits MC. In $ 1  we 
found that the only surviving components of the electromagnetic field tensor can be F,, 
and F24. Also from equation (1.7) it is clear that F14 and F2, cannot be determined 
uniquely. Considering different possibilities three cases arise : 

Case (i). F,,  = 0, F24 # 0. 
Case (ii). F2, = 0, F , ,  # 0. 
Case (iii). F , ,  # 0, F2,  # 0. 
For case (i) the set of equations (4.1) give on integration 

= Gl(x1,x4) (4.2) 

r 2  = G X ~ + G ~  (4.3) 

t3  = G,(x', ~ ' ) - e ~ ~ [ i G , , ( x ~ ) ~  +G2,,x2]+ G,]x3 (4.4) 

5' = G4(x4) (4.5) 
where G,  , G, are functions of x', x4 and G 2 ,  G, are functions of x4 alone and 

Hence the components of the MC vector are given by equations (4.2)-(4.5) and the RC 
vector (2.3) in this case also reduces to the form given by these equations and 

( 4 4  
Thus the vector field whose components are given by equations (4.2)-(4.4) and (4.6) 
defines RC as well as MC. 

4" = K/a'l2. 

For the case (ii), considering (4.1) we determine 

5 ,  = UX'S U ,  

( 2  = U2(X2, x") 
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r 3  = ~ ~ ( x ~ , x ~ ) - e ~ ~ [ ~ U , ~ ( x ~ ) ~ +  u,,,x']+ 

5" = U ,  (4.10) 

where U , ,  U ,  are functions of x2, x4 and U , ,  U ,  are functions of x4 alone and 

Hence the components of the vector field 5' given by equations (4.7)-(4.10) define 
Maxwell collineation for the space-time and it is easy to see that the RC vector (2.3) in this 
case reduces to the form given by equations (4.7)-(4.9) and (4.6). Thus the vector field 
whose components are given by these equations defines RC as well as MC for the space- 
time. 

For case (iii) we assume F,,  = a, F,, = /3 where a, /3 are non-zero arbitrary functions 
ofx4 satisfying equation (1.7). Using them in the set of equations (4.1) we get on simplifica- 
tion 

(4.11) (' = AX'  + - [ ( a ~ , ) , , - a ( ~ + 2 ~ , , u , ) ] x ~ + ~ ~  g' ' 
P B  

x [ ( a ~ , ) , ~  - a(A  + 2q4u4)] 

5" = u4(x4) 

(4.12) 

(4.13) 

(4.14) 

where A ,  A , ,  A , ,  u 3 ,  U, are arbitrary functions of x4 only and 

a 
U 2  = -- U ,  = 

Here a is an arbitrary function of x4 alone. 
Hence the vector field whose components are given by equations (4.1 1)-(4.14) 

defines MC and by choosing t4 as in equation (4.6), which is a particular case of equation 
(4.14), this vector field gives a family of vectors for which the space-time admits RC as 
well. 

+PA2,4)  

g"a P B '  
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5. Conclusion 

Katzin et al(1969) derived the conservation law for the case R = 0, R ,  # 0 in terms of a 
vector field 4' given by PtRi j  = 0. Collinson (1970) generalized the result to the case 
when R # 0. He also derived the conservation law in terms of a vector field giving Max- 
well collineation in a null electromagnetic field. Ordinarily the two conservation laws are 
satisfied along two different vector fields. In the present case we find that there is a 
common vector field giving Ricci as well as Maxwell collineation along which both the 
conservation laws are satisfied. 

References 

Collinson C D 1970 General Relaticity and Graritation 1 13742 
Katzin G H,  Levine J and Davis W R 1969 J .  Math. Phys. 10 617-29 
Synge J L 1960 Relaticity' The General Theory (Amsterdam: North-Holland) chap IX p 344 
Singh K P and Sharma D N 1975 General Relativity and Gravitation 6 N o  3 


